在Azure开始提供OpenAI服务之初,公司的大佬就申请开通了相应的资源。我也趁此试用了更多的场景,一边用Azure的OAI,一边用官方的,对比其中的差异。看看是不是像售前所说的那样,是同一套模型,同一套API。同时也体验了New Bing,Google Bard, Vicuna之类的模型。感觉对于深度学习这一块的知识已经有点跟不上了。只能在应用和产品化方面下下心思了。
之所以想去做定制化的ChatGPT,一是希望能够实现稍微有点自主智能的Bot, 不是去条件式回答,而是能够聚合语料库,知识库。例如:企业内的WIki,客服的案例库。过去都是将案例库设置条件访问,客户咨询按路径,加人工的方式。如果能够实现自助聚合这些知识,显然可以提升很大的效率。二是希望能够在垂直领域进行应用,就像昨晚和宇哥讨论的,他认为GPT也能在数据安全领域得到一定的应用。对此深表赞同。如果想去做类似这些应用就需要涉及到自定义的训练。以下为相关教程,参考及资源见文章最后部分。
python3.10
安装llama_index最新版 (pip install llama_index
) , 如果已经安装请使用pip install --upgrade llama_index
进行升级
如果出现
cannot import name 'BaseOutputParser' from 'langchain.schema'
报错,请使用pip install --upgrade langchain
升级至最新版本即可
Azure账号并开通了Azure的OpenAI 资源, 以下简称OAI
使用OAI上部署以下模型(注意deployment name不是model name,后面使用到的都是deployment name):
GPT Model(开通默认就有gpt-35-turbo,gpt-4-32k需要申请)
text-davinci-003
text-embedding-ada-002
`import os``import openai``from langchain.llms import AzureOpenAI``from langchain.embeddings import OpenAIEmbeddings``from llama_index import LangchainEmbedding``from llama_index import (` `GPTSimpleVectorIndex,` `SimpleDirectoryReader,`` LLMPredictor,` `PromptHelper,` `ServiceContext``)`` ``openai.api_type = "azure"``openai.api_base = "https://xxxxxxxxx.openai.azure.com/"``openai.api_version = "2023-03-15-preview"` `os.environ["OPENAI_API_KEY"] = "xxxxx"``openai.api_key = os.getenv("OPENAI_API_KEY") # idiot !, if i don't use this ,it cannot be valiadtion`` ``gptmodel = "<your deployment name>" # model: gpt4``embeddingmodel = "<your deployment name>" # model : text-embedding-ada-002`` ``train_dir = "./qa_datasets" # high qulaity ciso conversations`` ``llm = AzureOpenAI(deployment_name=gptmodel, model_kwargs={` `"api_key": openai.api_key,` `"api_base": openai.api_base,` `"api_type": openai.api_type,` `"api_version": openai.api_version,``})``llm_predictor = LLMPredictor(llm=llm)`` ``embedding_llm = LangchainEmbedding(OpenAIEmbeddings(` `document_model_name=embeddingmodel,` `query_model_name=embeddingmodel``))`` ``documents = SimpleDirectoryReader(train_dir).load_data()`` ``max_input_size = 2048``# set number of output tokens``num_output = 1024``# set maximum chunk overlap``max_chunk_overlap = 20`` ``prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)`` ``service_context = ServiceContext.from_defaults(` `llm_predictor=llm_predictor,` `embed_model=embedding_llm,` `prompt_helper=prompt_helper``)`` ``index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context)``index.save_to_disk('ciso.index_hq_gpt4')``print("Save to localpath")`` `
` ``import os``import json``import openai``from langchain.llms import AzureOpenAI``from langchain.embeddings import OpenAIEmbeddings``from llama_index import LangchainEmbedding``from llama_index import (` `GPTSimpleVectorIndex,` `SimpleDirectoryReader,`` LLMPredictor,` `PromptHelper,` `ServiceContext``)`` ``openai.api_type = "azure"``openai.api_base = "https://xxxxxxxx.openai.azure.com/"``openai.api_version = "2023-03-15-preview"``os.environ["OPENAI_API_KEY"] = "xxxxxxxx"``openai.api_key = os.getenv("OPENAI_API_KEY")` ` ``gptmodel = "<deployment name>" #gpt-4-32k not work, use text-davinci-003``embeddingmodel = "<deployment name>" #text-embedding-ada-002`` ``llm = AzureOpenAI(deployment_name=gptmodel, model_kwargs={` `"api_key": openai.api_key,` `"api_base": openai.api_base,` `"api_type": openai.api_type,` `"api_version": openai.api_version,``})``llm_predictor = LLMPredictor(llm=llm)``embedding_llm = LangchainEmbedding(OpenAIEmbeddings(` `document_model_name=embeddingmodel,` `query_model_name=embeddingmodel``))``max_input_size = 500``# set number of output tokens``num_output = 48``# set maximum chunk overlap``max_chunk_overlap = 20`` ``prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)`` ``service_context = ServiceContext.from_defaults(` `llm_predictor=llm_predictor,` `embed_model=embedding_llm,` `prompt_helper=prompt_helper``)`` ``index = GPTSimpleVectorIndex.load_from_disk('./ciso.index_hq_gpt4',service_context=service_context)`` ``query = 'what do you think should be the first thing to do as a ciso?'`` ``print('query was:', query)``print('answer was:', answer)`
我这里使用了47篇CISO的对话进行的训练,对比GPT3.5
, GPT4
,和copilothub
, 结果如下:
GPT3.5
GPT 4
Copilothub(仅能提供5篇
自己训练的
当然在这里其实我开始怀疑是build executive team重要,还是identify risk重要了。不过对于自我启发而言,其实已经够用了。算是仁者见仁,智者见智吧。如果想要做的更好,肯定是需要更高质量的数据。如果能把某些群体的知识聚集到一起,那么对于帮助新人入门来说是非常有益的,让知识不再局限。
前两天问一个英语专业的学生去翻译了一段译文,看了看效果和GPT35稍有差距,今天对比了下GPT4,发现差距就更大了。再次感到不学习就容易被淘汰。在未来,人人都应该能熟练掌握Prompt,有时候它可能用在生产环境不是那么严谨,但对于自我启发还是可以的。
针对Azure的OAI来说,由于官方限制了subscription内的实例,导致目前只能作为demo使用。部署的单个instance不能很好的承载较高的qps,(我没有进行压测,但是周末拿来做自动化翻译的时候,发现很快就报错了)。未来生产化的场景,一定是需要集群的。
相信AI的能力,同时作为安全工程师,也要尝试去发现安全问题。知道没有安全的系统。下图为GPT4在处理上帝模式的Prompt,可以看到已经失效了 。试想在使用GPT的时候被插入“提权”(暂且称其为提权)的Prompt,输出一些暴恐数据。同时针对自有数据怎么样存储,怎么删除也是问题,毕竟现在模型不支持私有化(好像就算私有化,普通玩家算力也吃不消)。另外相关的平台也难免出现其他安全问题,比如上次ChatGPT官方聊天记录出错的问题。涉及到信息泄漏。以及这两天三星芯片事件也风风火火。这个在使用OAI的api时尤其明显(两周前遇到调用Completion时出现乱七八糟的回复)。类似的,早上看到Copilothgub平台,用起来体验还是蛮不错的。但是目前不能注销账户,仅支持设置Public的Bot也是有很大问题的,顺带测了下bypass模式,看起来背后依旧是3.5模型,没法过滤一些prompt。
最近把ChatGPT的很多玩法都测了一遍(完整列表见此处),上周末也撸了个GPT版本的Code Review。当然毫无疑问,结果是取决于Prompt的质量的。这是做Code Review,Code Translation和Log Analysis的示例。