本篇文章将带给各位读者关于Scrapy与MongoDB的结合,打磨出完美的指纹存储机制,同时也解决了Redis内存压力的问题。我们将深入探讨Scrapy-Redis源码的改造,使其可以根据不同场景进行灵活配置和使用。欢迎各位读者阅读并参与讨论!
**特别声明:**本公众号文章只作为学术研究,不作为其他不法用途;如有侵权请联系作者删除。
立即加星标
每月看好文
目录
一、前言介绍
二、架构梳理
三、源码分析
四、源码重写
五、文章总结
一、前言介绍
在使用Scrapy-Redis进行数据采集时,经常会面临着Redis内存不足的困扰,特别是当Redis中存储的指纹数量过多时,可能导致Redis崩溃、指纹丢失,进而影响整个爬虫的稳定性。那么,面对这类问题,我们应该如何应对呢?我将在本文中分享解决方案:通过改造Scrapy-Redis源码,引入MongoDB持久化存储,从根本上解决了上述问题。敬请关注我的文章,一起探讨这个解决方案的实现过程,以及带来的收益和挑战。
二、架构梳理
1、进行源码分析之前,我们需要先了解下scrapy及scrapy-redis的架构图,两者相比,是哪些地方进行了改造?带着这样的疑问,我们来看下两个框架的架构图:
图1(scrapy架构图)
图2(scrapy-redis架构图)
2、拿 图2 同 图1 对比,我们可以看到scrapy-redis在scrapy的架构上增加了redis,基于redis的特性拓展了如下四种组件:Scheduler,Dupfilter,ItemPipeline,BaseSpider,这也是为什么在redis中会生成spider:requests、spider:items、spider:dupfilter三个key的原因。接下来我们进入源码分析环节,来看看scrapy-redis如何进行指纹改造吧。
三、源码分析
1、分析scrapy-redis源码,我们在使用scrapy-redis时,在settings模块都会进行如下配置:
**总结:**这里面的三个参数,分别同redis进行请求出入、请求指纹、请求优先级交互,如果我们想要修改redis指纹模块,那么我们需要对RFPDupeFilter模块进行重写,从而结合mongodb进行大量指纹存储,接下来进入源码分析环节。
2、阅读分析RFPDupeFilter源码,我们先来附上RFPDupeFilter完整源码如下:
`import logging``import time`` ``from scrapy.dupefilters import BaseDupeFilter``from scrapy.utils.request import request_fingerprint`` ``from . import defaults``from .connection import get_redis_from_settings`` `` ``logger = logging.getLogger(__name__)`` `` ``# TODO: Rename class to RedisDupeFilter.``class RFPDupeFilter(BaseDupeFilter):` `"""Redis-based request duplicates filter.`` ` `This class can also be used with default Scrapy's scheduler.`` ` `"""`` ` `logger = logger`` ` `def __init__(self, server, key, debug=False):` `"""Initialize the duplicates filter.`` ` `Parameters` `----------` `server : redis.StrictRedis` `The redis server instance.` `key : str` `Redis key Where to store fingerprints.` `debug : bool, optional` `Whether to log filtered requests.`` ` `"""` `self.server = server` `self.key = key` `self.debug = debug` `self.logdupes = True`` ` `@classmethod` `def from_settings(cls, settings):` `"""Returns an instance from given settings.`` ` `This uses by default the key ``dupefilter:<timestamp>``. When using the` ` ``scrapy_redis.scheduler.Scheduler`` class, this method is not used as ` `it needs to pass the spider name in the key.`` ` `Parameters` `----------` `settings : scrapy.settings.Settings`` ` `Returns` `-------` `RFPDupeFilter` `A RFPDupeFilter instance.`` `` ` `"""` `server = get_redis_from_settings(settings)` `# XXX: This creates one-time key. needed to support to use this` `# class as standalone dupefilter with scrapy's default scheduler` `# if scrapy passes spider on open() method this wouldn't be needed` `# TODO: Use SCRAPY_JOB env as default and fallback to timestamp.` `key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())}` `debug = settings.getbool('DUPEFILTER_DEBUG')` `return cls(server, key=key, debug=debug)`` ` `@classmethod` `def from_crawler(cls, crawler):` `"""Returns instance from crawler.`` ` `Parameters` `----------` `crawler : scrapy.crawler.Crawler`` ` `Returns` `-------` `RFPDupeFilter` `Instance of RFPDupeFilter.`` ` `"""` `return cls.from_settings(crawler.settings)`` ` `def request_seen(self, request):` `"""Returns True if request was already seen.`` ` `Parameters` `----------` `request : scrapy.http.Request`` ` `Returns` `-------` `bool`` ` `"""` `fp = self.request_fingerprint(request)` `# This returns the number of values added, zero if already exists.` `added = self.server.sadd(self.key, fp)` `return added == 0`` ` `def request_fingerprint(self, request):` `"""Returns a fingerprint for a given request.`` ` `Parameters` `----------` `request : scrapy.http.Request`` ` `Returns` `-------` `str`` ` `"""` `return request_fingerprint(request)`` ` `@classmethod` `def from_spider(cls, spider):` `settings = spider.settings` `server = get_redis_from_settings(settings)` `dupefilter_key = settings.get("SCHEDULER_DUPEFILTER_KEY", defaults.SCHEDULER_DUPEFILTER_KEY)` `key = dupefilter_key % {'spider': spider.name}` `debug = settings.getbool('DUPEFILTER_DEBUG')` `return cls(server, key=key, debug=debug)`` ` `def close(self, reason=''):` `"""Delete data on close. Called by Scrapy's scheduler.`` ` `Parameters` `----------` `reason : str, optional`` ` `"""` `self.clear()`` ` `def clear(self):` `"""Clears fingerprints data."""` `self.server.delete(self.key)`` ` `def log(self, request, spider):` `"""Logs given request.`` ` `Parameters` `----------` `request : scrapy.http.Request` `spider : scrapy.spiders.Spider`` ` `"""` `if self.debug:` `msg = "Filtered duplicate request: %(request)s"` `self.logger.debug(msg, {'request': request}, extra={'spider': spider})` `elif self.logdupes:` `msg = ("Filtered duplicate request %(request)s"` `" - no more duplicates will be shown"` `" (see DUPEFILTER_DEBUG to show all duplicates)")` `self.logger.debug(msg, {'request': request}, extra={'spider': spider})` `self.logdupes = False`` `
3、我们对scrapy-redis dupfilter.py源码进行分析如下:
**解读:**request_seen方法中的self.request_fingerprint方法会对请求指纹进行sha1加密运算得到一个40位长度的fp参数,然后redis set会对该指纹进行add添加,如果指纹不存在则返回True,return True==0 则最后结果返回False,如果指纹存在则返回True,return False==0 则最后结果返回True。接下来分析下调度器是如何进行最终指纹判重的!
4、我们分析Schedulter源码,查看Scheduler对请求进行入队列处理逻辑如下:
**解读:**通过分析enqueue_request方法,我们可以看到相关逻辑,如果该请求设置为去重并且request_seen方法返回为True,则该请求不入队列;相反该请求需要入队列,并进行相关数据自增统计。
**总结:**其实分析到这里,我们只需要修改request_seen方法,即可完成scrapy-redis fp源码改造,通过结合mongodb,实现各种爬虫fp指纹持久化存储;长话短说,接下来进入源码重写环节。
四、源码重写
1、首先我们需要在settings里配置mongodb相关参数,代码如下:
`MONGO_DB = "crawler"``MONGO_URL = "mongodb://localhost:27017"`
2、紧接着笔者通过继承重写BaseDupeFilter源码,自定义去重模块MongoRFPDupeFilter源码如下:
`import logging``import time`` ``from pymongo import MongoClient``from scrapy.dupefilters import BaseDupeFilter``from scrapy.utils.request import request_fingerprint``from scrapy_redis import defaults`` ``logger = logging.getLogger(__name__)`` `` ``class MongoRFPDupeFilter(BaseDupeFilter):` `"""Redis-based request duplicates filter.` `This class can also be used with default Scrapy's scheduler.` `"""`` ` `logger = logger`` ` `def __init__(self, key, debug=False, settings=None):` `self.key = key` `self.debug = debug` `self.logdupes: bool = True` `self.mongo_uri = settings.get('MONGO_URI')` `self.mongo_db = settings.get('MONGO_DB')` `self.client = MongoClient(self.mongo_uri)` `self.db = self.client[self.mongo_db]` `self.collection = self.db[self.key]` `self.collection.create_index([("_id", 1)])`` ` `@classmethod` `def from_settings(cls, settings):` `key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())}` `debug = settings.getbool('DUPEFILTER_DEBUG')` `return cls(key=key, debug=debug, settings=settings)`` ` `@classmethod` `def from_crawler(cls, crawler):` `"""Returns instance from crawler.`` ` `Parameters` `----------` `crawler : scrapy.crawler.Crawler`` ` `Returns` `-------` `RFPDupeFilter` `Instance of RFPDupeFilter.`` ` `"""` `return cls.from_settings(crawler.settings)`` ` `def request_seen(self, request):` `"""Returns True if request was already seen.` `"""` `fp = self.request_fingerprint(request)` `# This returns the number of values added, zero if already exists.` `if self.collection.find_one({'_id': fp}):` `return True` `self.collection.insert_one(` `{'_id': fp, "crawl_time": time.strftime("%Y-%m-%d")})` `return False`` ` `def request_fingerprint(self, request):` `return request_fingerprint(request)`` ` `@classmethod` `def from_spider(cls, spider):` `settings = spider.settings` `dupefilter_key = settings.get("SCHEDULER_DUPEFILTER_KEY", defaults.SCHEDULER_DUPEFILTER_KEY)` `key = dupefilter_key % {'spider': spider.name}` `debug = settings.getbool('DUPEFILTER_DEBUG')` `return cls(key=key, debug=debug, settings=settings)`` ` `def close(self, reason=''):` `"""Delete data on close. Called by Scrapy's scheduler.`` ` `Parameters` `----------` `reason : str, optional`` ` `"""` `self.clear()`` ` `def clear(self):` `"""Clears fingerprints data."""` `self.collection.delete(self.key)`` ` `def log(self, request, spider):` `"""Logs given request.`` ` `Parameters` `----------` `request : scrapy.http.Request` `spider : scrapy.spiders.Spider`` ` `"""` `if self.debug:` `msg = "Filtered duplicate request: %(request)s"` `self.logger.debug(msg, {'request': request}, extra={'spider': spider})` `elif self.logdupes:` `msg = ("Filtered duplicate request %(request)s"` `" - no more duplicates will be shown"` `" (see DUPEFILTER_DEBUG to show all duplicates)")` `self.logger.debug(msg, {'request': request}, extra={'spider': spider})` `self.logdupes = False`` `
3、第三步,我们需要将继承重写的MongoRFPDupeFilter模块配置到settings文件中,代码如下:
`# 确保所有的爬虫实例使用Mongodb进行重复过滤``DUPEFILTER_CLASS = "test_scrapy.dupfilter.MongoRFPDupeFilter"`
4、编写测试爬虫(编写代码环节跳过),直接查看mongdb collection中fp结果,截图如下:
**总结:**到这里整个流程就结束了,接下来不管我们开发多少个爬虫,都默认使用mongodb对request fp指纹进行存储。最后我们来总结下scrapy-redis同scrapy-mongodb的指纹方式优缺点吧!
scrapy-redis 速度快,但由于指纹过大,内存不足会导致redis宕机,内存昂贵
scrapy+mongo 速度同redis相比,不是很优,优点是能存储大批量指纹,磁盘廉价
更多每日开发小技巧
尽在****未闻 Code Telegram Channel !
END
未闻 Code·知识星球开放啦!
一对一答疑爬虫相关问题
职业生涯咨询
面试经验分享
每周直播分享
......
未闻 Code·知识星球期待与你相见~
一二线大厂在职员工
十多年码龄的编程老鸟
国内外高校在读学生
中小学刚刚入门的新人
在“未闻 Code技术交流群”等你来!
入群方式:添加微信“mekingname”,备注“粉丝群”(谢绝广告党,非诚勿扰!)